

Active Soil Dust Collection System with Raspberry Pi Machine Visual Characterization

PRESENTED BY: Jie Jin Jun Mei Ruihua Shi Zhiyu Bai

NAL NORTHERN ARIZONA UNIVERSITY

Project Description

Figure 1: The primary exposure pathway

Figure 2: BSNE passive sampler

- Valley Fever is an infectious disease caused by the fungus Coccidioides. The main exposure pathway for humans is inhalation of soil dust where fungi are located. Arizona is one of the high incidence areas of Valley Fever.
- To design and implement an automatic soil dust collection and characterization system utilizing the machine vision approach.
- "Yahoo Image Search." *Yahoo.com*, 2020, images.search.yahoo.com/yhs/search. Accessed 19 June 2023.
- Goossens, Dirk, and Zvi Y Offer. "Wind Tunnel and Field Calibration of Six Aeolian Dust Samplers." Atmospheric environment (1994) 34.7 (2000): 1043–1057. Web.

Jun Mei Soil Characterization 23S03

Clients/Stakeholders

Client/Sponsor

• Dr. Zhongwang Dou

Stakeholders

- Summer 2023 Team 3
- Researchers and Scientists
- Public Health Organizations
- Patients and the Public
- Technology Developers and Manufacturers

Figure 3: Dr. Zhongwang Dou

23S03 3

lun Mei

Soil Characterization

Consistency of Customer Requirements

Customer Requirements:

- CR1 Easy to carry, compact and lightweight(0.04 m^3, 3kg)
- CR2 Easy to operate
- CR3 Capture images with high resolution($7 * 7 \mu m$)
- CR4 A durable design can greatly extend the life and working duration of the device(0.5h)
- CR5 The equipment should work as steadily as possible to ensure a clear shot.
- CR6 Fast collection(9m/s)
- CR7 Can be used in different environments

Jun Mei Soil Characterization 23S03 م

Decomposition Model

- Provide insights into the individual components and their interactions within a larger system.
- Provide underlying logic for generating models.

Engineering Requirements

Engineering Requirements:

- ER1 Decrease weight and volume of body
- ER2 Increase flow rate and speed
- ER3 Increase control system automaticity
- ER4 Decrease exposure time for shooting
- ER5 Increase camera sharpness
- ER6 Increase strength of material
- ER7 Increase working duration

Jun Mei Soil Characterization 23S03 6

QFD

Decrease weight and volume of body		/							
increase flow rate and speed		+							
Increase control system automaticity		+	+						
Decrease exposure time for shorting									
Increase camera sharpness									
Increase strength of material									
Increase working duration									
				- h - l					1
			10	cnnica	requ	Ireme	nts		
	istomer Weights	screase weight and volume of body	crease flow rate and speed	crease control system automaticity	screase exposure time for shooting	crease camera sharpness	crease strength of material	crease working duration	
Customer Needs	0		⊒.	5		드	5	5	
Easy to carry, compact and lightweight	4	3		9					
High resolution	4	5		3	9	9			
durable	2			1	5		9	9	
Stable	3			1			3	-	
Fast collection	5		9						
Affordable	4	1							
Can be used in different environments	2	1	1	3	3	3	3	3	
Technical	Requirement Units	kg, m^3	L/min	N/A	sп	Ш	Mpa	hour	Table 1: QFD Table
Technical Re	quirement Targets	60	45	45	30	40	35	20	
	Importance rating	8	47	47	6	42	g	24	

Jun Mei Soil Characterization 23S03 7

Concept Generation

- Camera Shoot dust
- Channel Provide air inlet and the platform for shooting window
- Fan Blow the dust up
- Pump Suck the dust
- Collection Box Collect the dust

Table 2: Morphological Matrix

Zhiyu Bai Soil Characterization 23S03

Concept Selection

- Used to narrow down to 2 designs from 4
- Thought of 6 different criteria
- Had design 2 as Datum

Concept	Design 1	Design 2	Design 3	Design 4
-→ Criteria	A2 B3 C2 D3 E1	A4 B3 C1 D3 E2	A2 B2 C3 D1 E3	A4 B2 C3 D3 E5
Prime Cost	+	S	s	-
Operation	S	S	S	S
Durability	-	S	+	+
Installation	S	S	S	S
Clarity	+	S	+	+
Efficiency	+	S	+	S
∑+	3	0	3	2
Σ-	1	0	0	1
∑s	2	6	3	3

Table 3: Pugh Chart

NAU NORTHERN ARIZONA UNIVERSITY

Decision Matrix

	Weight	Desi	gn 3	Design 1		
Criterion		Unweighted Score	Weighted Score	Unweighted Score	Weighted Score	
Prime Cost	0.1	90	9	93	9.3	
Operation	0.1	95	9.5	95	9.5	
Durability	0.15	94	14.1	87	13.05	
Installation	0.05	97	4.85	97	4.85	
Clarity	0.25	93	23.25	91	22.75	
Efficiency	0.35	90	31.5	92	32.2	
Total	1	Sum:	92.2	Sum:	91.65	

Table 4: Decision Matrix

NAU NORTHERN ARIZONA UNIVERSITY

- Had same criteria and compared them
- Advantages/Disadvantages

- Efficiency most important
- Installation least important

First-generation Prototype

Advantages:

- Portable design
- Reduction of connecting pipes
- Guarantee the smooth flow

Disadvantages:

- Hard to move dust
- May not be able to block dust particles

NAU NORTHERN ARIZONA UNIVERSITY

• Power supply

CAD Iteration

Figure 8: Previous CAD Models

Final CAD Model

Figure 9: Final CAD Model

Manufacturing Process

Task 1	Aluminum Frame Construction	100%	8/31/23 9/7/23
Task 2	Camera driver debugging.	100%	8/31/23 9/20/23
Task 3	Pipe Printing	100%	9/13/23 9/20/23
Task 4	Joint Design and Printing	100%	9/17/23 9/22/23
Task 5	Air pump installation	100%	9/17/23 9/22/23
Task 6	Raspberry Pi Control Coding	100%	9/24/23 10/1/23
Task 7	Joint of Fan design	100%	10/8/23 10/13/23
Task 8	Fan and Raspberry Pi installation	100%	10/8/23 10/13/23
Task 9	Compact battery solution	100%	10/15/23 10/20/23
Task 10	Wire Package	100%	10/22/23 10/29/23
Task 11	Code Optimize	100%	10/29/23 11/12/23
Task 12	Future Improvement	30%	11/12/23

Table 5: Manufacturing Process

Manufacturing

Figure 10: Cutting of aluminum rods

Figure 11&12: Making conductive channels

Jie Jin Soil Characterization 23S03 15

Manufacturing

Figure 13: Device Prototype

Figure 14: Final Design

Jie Jin Soil Characterization 23S03 16

Testing Plan

Experiment/Test	Relevant Components	Relevant DRs	
EX1-Flow Rate and Speed Test	1.Channel 2.Vacuum	ER2,CR6,CR7	
EX2-Control System Test	1.Raspberry Pi 2.Relay 3.Camera	ER3,CR2,CR4,CR5,CR7	-
EX3-Shooting Resolution Test	1.Camera 2.Channel	ER5,CR3,CR7	
EX4-Capture Speed Test	1.Raspberry Pi 2.Fan 3.Camera	ER4,CR3,CR7	
EX5-Working Duration Test	1.Battery 2.Fan 3.Raspberry Pi	ER7,CR4,CR7	Ruihua Shi Soil Characterization

1. Flow Rate and Speed Test

Results:

Cross sectional area of inlet:

 $A_i = length \times width = 0.01748m \times 0.00794m = 1.387 \times 10^{-4}m^2$

Cross sectional area of outlet:

$$A_o = \pi r^2 = \pi 0.003625^2 = 0.00004128m^2$$

Flow speed at inlet:

 $v_i = 12.1 \frac{m}{s}$

Flow speed at outlet:

$$v_o = 37.6 \frac{m}{s}$$

Flow rate at inlet:

$$Q_i = A_i \times V_i = 1.387 \times 10^{-4} m^2 \times 12.1 \frac{m}{s} = 0.001678 \frac{m^3}{s}$$

Flow rate at outlet:

$$Q_o = A_o \times V_o = 0.00004128m^2 \times 37.6\frac{m}{s} = 0.001552\frac{m^3}{s}$$

Cross sectional area of middle of the channel:

 $A_m = length_m \times width_m = 0.013m \times 0.0013m = 0.000169m^2$ Calculate the flow speed at the middle of the channel:

$$v_1 = \frac{Q_i}{A_m} = \frac{0.001678 \frac{m^3}{s}}{0.000169m^2} = 9.93 \frac{m}{s}$$
$$v_2 = \frac{Q_o}{A_m} = \frac{0.001552 \frac{m^3}{s}}{0.000169m^2} = 9.18 \frac{m}{s}$$

Average to get the final result:

$$v = \frac{v_1 + v_2}{2} = \frac{9.93 \frac{m}{s} + 9.18 \frac{m}{s}}{2} = 9.555 \frac{m}{s}$$

Flow speed with channel:

$$v_{o} = 35.5 \frac{m}{s}$$

$$A_{0} = 0.00004128m^{2}$$

$$Q = 1.4654 \times 10^{-3} \frac{m^{3}}{s}$$

$$v_{middle} = \frac{Q}{A_{m}} = 8.67 \frac{m}{s}$$

Figure 15. Test Flow Speed with Hot Wire

Ruihua Shi Soil Characterization 23S03 18

2. Control System Test Results

Results

- Successfully set up remote connection for Raspberry Pi using RealVNC software.
- Raspberry Pi connected to laptop hotspot for WLAN-based remote desktop and file transfer.
- Set the fan speed limit to 50%, with the actual speed around 2100 rpm.
- The fan speed is approximately 38% of the maximum speed, which is within the acceptable range of 30%-40%.

Figure 16:VNC Remote Control

3.Shooting Resolution Test Results

Results

Speed : 8.67 m/s

Shutter time : 1/8772 s

Resolution 1: 1920*1080

Direction	Pixel	Length (cm)	Length per pixel(cm)
Horizontal	1920	1	0.000521
Vertical	1080	0.75	0.000694

Image length:

867cm/s*(1/8772)s/0.000521=189.7 pixel

Resolution 1: 640*480

Direction	Pixel	Length (cm)	Length per pixel(cm)
Horizontal	640	1	0.00156
Vertical	480	0.75	0.00156

Image length:

Image length: 867cm/s*(1/8772)s/0.00156=63.3 pixel

Figure 17 & 18:Shooting area in length and height

Ruihua Shi Soil Characterization 23S03 20

4. Capture Speed Test Results

Figure 19: Resolution: 640x480 30fps

Figure 20: Resolution: 1920x1080 24fps

Ruihua Shi Soil Characterization 23S03 21

4. Capture Speed Demonstration

5. Duration Test

Cross section $A = 0.002m * 0.0254m * 0.0254m = 0.0000508m^2$

F

$$= m * g = 2716.17g * \frac{9.81m}{s^2} = 25.6N$$

$$\sigma = \frac{F}{A} = 50.3kPa$$

$$\sigma_{all} = 65Mpa$$

$$f_s = \frac{\sigma_{all}}{\sigma} = 129$$

Figure 21 : Prototype Weight

Ruihua Shi Soil Characterization 23S03 23

Testing Result

Engineering Requirement	Target	Tolerance	Measured/Calculated Value	ER met? (Yes or No)	Client Acceptable (Yes or No)
ER1-Decrease weight and volume of body	0.04 m^3 3 kg	5%	0.038 m^3 2.716 kg	Yes	Yes
ER2-increase flow rate and speed	9 m/s	Yes	Yes		
ER3-Increase control system automaticity	Most parts in the device can be controlled by Raspberry Pi		Raspberry Pi can control the camera and fan	Yes	Yes
ER4-Decrease exposure time for shooting	1.5 μs	5%	20 μs	No	Yes
ER5-Increase camera sharpness	7 * 7 μm	5%	5.21 * 6.94 μm	Yes	Yes
ER6-Increase strength of material	<65 Mpa	5%	0.503 Mpa	Yes	Yes
ER7-Increase working duration	0.5 h	10%	0.75h	Yes	Yes

Ruihua Shi

Testing Result

Customer Requirement	CR met? (Yes or No)	Client Acceptable (Yes or No)
CR1-Easy to carry, compact and lightweight	Yes	Yes
CR2-Easy to operate	Yes	Yes
CR3-High resolution	NO	NO
CR4-durable	Yes	Yes
CR5-Stable	Yes	Yes
CR6-Fast collection	Yes	Yes
CR7-Can be used in different environments	Yes	Yes

Purchasing Plan

1	Fan	1	12V 57.6W 5500RPM	Agitate the air	N/A	120mm*120mm*38mm	24.99	https://www.amazon.com/PFC1212DE-252-85CFM-6 Asse	embled
2	Channel	1	Trumpet tube	Provide air inlet,outlet and camera window	Conductive Filamen	Inlet: 33mm*33mm Outlet: r = 17.5mm	49.99	https://www.amazon.com/dp/B00X8BQYVM?ref_=cm Asse	sembled
3	Camera	1	12.3PM	Shoot and record dust	N/A	2.5in	29.99	https://www.amazon.com/Arducam-Autofocus-Raspber	sembled
4	Battery	1	11.1V/6Ah (66.6Wh)	Power supply to the control system	Lithium Ion	28mm*85mm*145mm	N/A	N/A Asse	sembled
5	Raspberry Pi 4B	1	N/A	Control the camera and fan	N/A	N/A	N/A	N/A Asse	sembled
6	Plant-Based UV Resin	3	3kg in total	Used for 3d printng	UV Resin	N/A	29	https://www.anycubic.com/collections/plant-based-uv-	house
7	Vacuum Pump	1	60W with HEPA filter	Absorb and store the dust	N/A	8.27in*6.30in	17.26	https://www.temu.com/wireless-mini-car-vacuum-clear	sembled
8	Shooting Window on Channel	1	Clear, conductive film	Camera window to capture dust	ITO Coated Glass	lin*0.4in	N/A	N/A Ass	sembled
9	HEPA Filter	12	N/A	Replace filter in vacuum to store dust	Plastic	2"L*1"W*4"H	38.97	https://www.amazon.com/Hand-Held-Cleaner-Replace	house
10	Nut	10	N/A	Fix components with mount	Zine	1/4in	1.1	Homedepo	sembled
11	Screw	10	N/A	Fix components with mount	Zine	1/4in*1/2in	1.38	Homedepo	sembled
12	Ball Head Screw Tripod Mount	4	360 degree rotating mount base	Fix fan and channel	Aluminum Alloy	N/A	13.98	https://www.amazon.com/dp/B08M4785CW?ref=ppx_Asse	sembled
13	Woven Wire 10 Mesh	2	2mm hole	N/A	Stainless Steel 304L	11.4"*23.6"	22.9	https://www.amazon.com/Woven-Wire-Mesh-Stainles	sembled
14	Frame	1	Cuboid	Make the entire system easy to transfer	Aluminum	12in*12in*16in	63.81	https://www.homedepot.com/p/Everbilt-1-1-2-in-x-96 Asse	sembled

Table 9: Bill of Materials

Purchasing Plan

Total Spent	293.37	Total Parts Needed	14
		Total Parts Received	14
		Parts Required (%)	100%
		Assembled (%)	100%

Table 10 : Bill of Materials

Future Work / LED Test

Objective:

To get 2 microsecond pulses of light to help the camera freeze the target within two pixels.

Procedure:

Use an oscilloscope to test pulse wavelength.

Result: Minimum pulse width: 20 μs.

Figure 21: Pulse width Test

Figure 23: LED light front

Figure 22: LED light back

Jie Jin Soil Characterization 23S03 28

- Change the material for the frame
- Change to a new lighting controller with shorter pulse
- Achieve synchronization of LED light and the camera

Jie Jin Soil Characterization 23S03 29

Conclusion

• The device can actively collect soil dust as well as photograph

the trajectory of particles.

- Generally meets all customer requirements.
- Future work will focus on improving the ability to freeze particle

images

[1] Tong, Gill, T. E., Sprigg, W. A., Van Pelt, R. S., Baklanov, A. A., Barker, B. M., Bell, J. E., Castillo, J., Gassó, S., Gaston, C. J., Griffin, D. W., Huneeus, N., Kahn, R. A., Kuciauskas, A. P., Ladino, L. A., Li, J., Mayol-Bracero, O. L., McCotter, O. Z., Méndez-Lázaro, P. A., & Mudu, P. (2023). Health and Safety Effects of Airborne Soil Dust in the Americas and Beyond. Reviews of Geophysics., 61(2). <u>https://doi.org/10.1029/2021RG000763</u>

[2] Goossens, Dirk, and Zvi Y Offer. "Wind Tunnel and Field Calibration of Six Aeolian Dust Samplers." Atmospheric environment (1994) 34.7 (2000): 1043–1057. Web.

[3] VERREAULT, MOINEAU, S., & DUCHAINE, C. (2008). Methods for Sampling of Airborne Viruses. Microbiology and Molecular Biology Reviews, 72(3), 413–444. <u>https://doi.org/10.1128/MMBR.00002-08</u>

[4] E. Kalisa, V. Kuuire, and M. Adams, "A preliminary investigation comparing high-volume and low-volume air samplers for measurement of PAHs, NPAHs and airborne bacterial communities in atmospheric particulate matter," *Environmental Science: Atmospheres*, vol. 2, no. 5, pp. 1120–1131, 2022, doi: <u>https://doi.org/10.1039/d2ea00078d</u>.

[5] Yamamoto, Naomichi et al. "A Passive Sampler for Airborne Coarse Particles." Journal of aerosol science 37.11
 (2006): 1442–1454. Web.

Soil Characterization 23S03 31

Thanks

Questions?

NAL NORTHERN ARIZONA UNIVERSITY